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NOTATION

A Area of water plane of ship

a Half length of ship

a=ka é*a/g or 2na/A

b Half beam of ship

S-B/Z Ratio of heam to length of ship

£(%,%2) Density of field potential in normalized co-ordinates
G Green's function for fluid flow problems

g Acceleration of gravity

H Damping factor for translatory motion

h(x,2) Boundary values given on immersed surface of ship
I Added moment of inertia

J Index for components of motion

k Wave number, 8%/g

M Added mass

N Damping factor for rotational motion

n Normal to immersed surface of ship

p(x,y,2) Space dependence of dynamic fluid pressure

R Distance, ré + ;2

r Distance, ,/()'c -2)2 + (z 'E)z

o Minimum distance between two neighboring pivotal points
S(x,z:t) Immersed surface of ship in motion
S*(x,z) Immersed surface of ship at rest
U(x,y,2z) Space dependence of field potential
V(X,¥,Z) Cpace dependence of field potential in normalized co-ordinates

w(x,y,2) Coefficients of €" in series development of p (x,¥,2)

i,f,i Surge, heave, and Sway

;,;,5 Fixed space co=-ordinates

;',i',;' Moving space co-ordinates

X,¥52 Normalized co-ordinates by dividing with wave length

%,9,% Normalizcd co-ordinates by dividing with half length of ship

vi
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NOTATION

Perturbation parameter for small motion

a
€ Perturbation parameter for shallow draft ship

£ Maximum draft at center of shallow draft ship
f,-,i Co-ordinates of a point on immersed surface of ship
ex,ey,oz Angles of roll, yaw and pitch

P Density of fluid

¢ Frequency of oscillation

¢ Velocity potential
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Introduction

The forced oscillation of a rigid body in the surface of a fluid
is investigated in this paper. John [1] showed that the problem of
steady state oscillations of a body in a free surface can be reduced to
a Fredholm integral equation. However the solution of the integral equa-
tion is difficult except for the case of special cross section geometry.
Peters and Stoker [2) as well as Haskind [3]) developed a method of solu-
tion for a thin ship.

The present paper concerns the three dimensional problem of a
ship with small draft. Ve consider the circular and elliptic disks and
determine the dependence of the added mass, added moment of inertia,
and damping factor on the frequency of the forced oscillations. A body
form of disk provides large wave-making effects so that the results will
serve as a complement to the thin ship theory. Two dimensional aspects
of this problem have been treated in [4) and [5].

I. General Formulation

We suppose the half-plane ; < 0 to be filled with an incompr¢ss=-
ible, inviscid fluid, i— 0 corresponding to a free surface, and x
and z denoting rectangular axes on that surface. It is assumed that
all motions of the fluid are irrotational, time-periodic, and small
enough so that the problem can be linearized by neglecting squared
terms,

Vle suppose that the fluid motion is produced by a ship which
is placed in the surface of the fluid at rest and set into the force-
ed periodic oscillation., When transients are passed, the resulting
fluid motion can be considered to be time-periodic with frequency d.
The irrotationality implies the existence of a velocity potential
#(x,y,z:t), and the periodicity in time means,

(1.1) ¢#(x,y,z:t) = Re(U(X,¥,Z) ed«t]

Next expressing the equation of ship surface in the equilibrium

position as,



(1.2) ; - S.(it;):

we assume that the form of the ship S°(x,z) satisfy the following geo~

metric conditions:

S*(x,z) = O along the edge of the equilibrium water plane
area which is bounded by the curve C,
(1.3) 5°(0,0) = €, maximum draft at the center,

S*(x,z) = S*(=x,z), and S°(%,z) = 5*(X,~-z).

In view of the symmetry the co-ordinates of the mass center can be
written as (0,y¢,0). If we express the position vector of the mass

center as R = 1K + 3¥ + kZ, its components are,
R(t) = Re(%e e-ivt),

(1.4) 2(t) =7 + Re(Pe omivt),
Z(t) = Re(Z* e-ivt),

V'e call X, Y, and f, the surge, the heave, and the sway, respectively,
and X°*, f‘, and i‘, the amplitude of the respective motions,

Now let us introduce a set of moving co-ordinates (x',y',z')
whose origin is attached to the centroid of water plane of the ship in
the equilibrium position. Ve see that (x',y',z') will coincide with
fixed co-ordinates (X,y,z) if the ship is at rest. From rigid body
dynamics, the velocity of a particle in the ship at any time is given

by,

“R+wx(r - %)

1.

(1.5)

where r = ix +Jy +kz, r'= Ix' +J3' + k2!, @ = iéx +jéy +kt°)z, and
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ex(t) - Re(e;( e

 Re(ge -itt
(1.6) 6 (t) = Re(03 &%),
ez(t) - Re(e‘z e"ivt )e

We call ex,ey, and Oz, the roll, yaw, and pitc., respectively, and
65965 and 67 ,the amplitude of the respective motions.
In order to show the meaning of small motions, we transform

the space variables by,
(1.7) x = kx, y = ky, z = kz,

where the wave number k is k = dz/g - 21t/i ’ N being the wave

length of free waves of frequency d. The normalized amplitudes for

the linear motions are given by X*® = aX', Y* = aY', and 2°® = aZ’,

a being a small parameter., We observe that a small means the ratio of

actual amplitudes to the wave length is small. Similarly the amplitudes

for rotational motions are given by O3 = ae;( , 6; -ae; » and 67 -ae;.
Neglecting squared terms means that the potential of the fluid

motion produced by the forced oscillation will have the form,

(1.8) ¢=' “¢'s

where @' and its derivatives are bounded and we are simply neglecting
terms involved a in al) our formulations. For instance we express

Bernoulli's equation as,
(1.9) P = -pRy - pB,(X,7,2:t) = -prF + p Rel18U(X,7,2) e"¥¢ ],

while the surface elevation is,

(1.10) ';Z_(i,i:t)z-%¢L(i,0,5:t).
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We shall now consider the boundary conditions governing the

potential function U(xX,y,z) in (I.1). As the fluid is assumed to be in-
compressible and irrotational,

v2¢ = 0,
or
(1.11) T4U = 0 in y < 0, outside the ship.

Neglecting terms in az, the free surface condition is,

¢tt + g¢; - 0)
or
(1.12) U; ~kU =0Oony=0, outside the ship.

As no flow occurs across the surface of the ship, the kinematic condition
can be written as,
¢n = n(x,y,z:t)+F(X,¥,2:t) on the immersed surface
¥y = S(x,2:t)

where n is the normal vector to the surface given by,
~ - -~ - ~ -
n = i cos(n,x) + J cos(n,y) + k cos(n,z},

and i_ is the velocity vector of a point (i,;,i) on the surface, We re-
mark here that the immersed surface in motion S(x,z:t) differs from the
equlibrium surface S*(x,z) introduced earlier. However it is consistent
with the omission of terms in a® to require this condition to be satis-
fied on the equilibrium surface.

If we denote the velocity potential for surge, heave, sway, roll, yaw,
and pitch by ¢J J = 1,2,...6, respectively, the linearity of the pro-
blem permits to write the total potential as @ = ¢J + Furthermore

the components satisfy, J=!

(¢])” - keonin,7), (¢?)] + Yeos(n,5), (¢3)n . Zcos(n,z),

r



(#,), = éx[(i-io)cos(n,a)-ﬁcm(p_»;)],
(@), = éy[Ecos(g,i)-icos(a,'z')], (8),, = 8,[xcon(n,¥)=(¥-y,)co08(n,%)],

hence,

(v --i‘i‘cos(g,;c), (U2)n --16§°008(!_1_,;), (U3)n --ﬁé’cos(g,;),

1)n

(Uh)n --idéx[ (¥~ys)cos(n,z)-zcos(n,y)1,
(1.13)
(U5 ) --it!éy[ zcos(n,x)-xcos(n,z)],

(%), --i&éz[;ccos(gj)-(;-i.)cos(g,i)], on y = S(x,z:t).

Finally at large distance, tlie propagating disturbance must have the form
of a radially outgoing progressive wave, that is,

(T.1) U(x,y,z) - % e kY Qlkr _ 0(-15') as r $o,
where r -J x2 + 22, and © = arctan (%) .

To show clearly the dependence of the solution on parameters, we
now introduce the dynamic pressure functions pJ(x,y,z) J=1,2,...6,
by,

Ry p(xy,2) =160 (%, &, %),

Ye
14 X Pz(x,}',z) ig U ( k? k’ "z: ))

N

R ;i‘-.p3(X.y,Z) -igU; (o £ )
(1.15)
)s

o
fzt)x

x|n

P,(x:)'ﬂ) = 18U ( x° k’

B EY

x|

)

x|

. - 2 X
L p5(x,y.7.) i€ U.)-( e K

)s

x(x
-

=P
-

XN

4 ”.z "6()(:.\')7-) = i‘{U()(

x|



then the conditions (I.11) = (I.14) can be expressed as,

(1.16)

(1.17)

(1.18)

(1.19)

vzpd =0 in y < 0, outside the ship.

(pj) (pJ) =0 on y=0, outside the ship,

;-
(py), = cos(n,x), (py), = cos(n,y), (py), = cos(n,z),
(ph)n =(y=yo)cos(n,z)-zcos(n,y),

(P5)n = ZCOS(P_’X)’XCOS(E:Z), (P6)n "xcos(ﬂ,y)'(y-yo)COB(n.X)

on y = 5(x,z1t),

£(0) o ¥ e ir | 0(-:_-') as r + .

Py F °

Equations (I.18) can be rewritten as,

(1.20)

=S
X

(p,) = (p,) = —m———t—
'n N +52 452 ’ b'n +52 452 ’

1l =25 + X5

(p) Ll (p) - _.f__....?.
2'n | 2 o2 ° 5'n 2 62

Y1 452 «'-Sz ,/i 5L 55

-5 x+(y=¥o)S

X

(p,) = —=——r——rm—, (p,) = —
3’n 2 ,a2 6'n 2 o2
J1 s 452 Y1 452 452

on y = S(x,z:t).

Here if we neglect terms in a®, the quantities S(x,z:t) in (1.20) can be

replaced by S®(x,z).

By (1.15) we have Bernoulli's equation in the form,

Xe et
P, ==pr. f’ + pg i Relpy(x,y,2) e 1,



Ye st
P, --pg‘;f + og i Relp,(x,y,2) ¢7*7"],

P3 --pg‘;f + pg %.30[93(&:!,:) e"" ),

(1.21)
Pl. ==pg % + PSG; % Re[Ph(x:Y:z) Q-Nt 1,

P5 --pgf + 089;, f— Re[ps(x,v,Z) oiot 1,

-igt ] .

~K

Py =~pg £ + &S] T Relpy(x,¥,2) e

II. Shallow Draft Approximation
In this section we relate the first order forces and moments ex-
erted on a ship which oscillates with six degrees of freedom to the added

mass, added moment of inertia, and damping factor. Then we develop the
perturbation procedure for a ship of small draft.
The three components of the fluid force relative to the fixed co-

ordinate system are,

Fy -}Y;P(;,;,;:t)coe(g,i) ds,
(11.1) Fy '[{sp(;‘:;:;“')cos(ﬂ:;) ds,

F, -}7;P(§,§,E:t)cos(ﬂ,;) ds,
where P is the pressure, and S here represents the immersed surface in
motion, The three components of moment relative to the fixed co-ordinate
axes are,

G, -/[SP[(i-Y)cOS(g.Z)-(E-Z)COS(_QJ)] ds,

(11.2) Gy =j);P[(Z-Z)cos(n,i)-(i-X)cos(ﬂ,i)] ds,

G, ,,/-;'Sp[()-(-X)cos(g,i)-(?-?)cos(ﬂ,i)] dS.
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From the calculated results of forces and moments presented in [1], for
the ship satisfying the symmetry conditions given by (I.3) we find,

Fx --ap]fa.¢;‘ coa(p_,;() ds + o( 02):

(11.3) --upﬂeﬂl cos(n,y) dS + Mg = apgf'X + 0(a?),

FY
P, =-ooff oo, con(n,i) o5 + o(a),

and
6, =ap [[ ¥} [2con(n,7)=(F-F,)cos(n, 2)1as = apse,'t// A(iz*%fdidi + 0(a?),

(I1.4) Gy -ap//a.ﬂ[;tcoe(ﬂ,;)-Ecos(g,;t)]dS + 0(a?),
G, =ap //,J{[(9-5.)coa(g.§)-§cos(a.§)]ds - apge;/[ A(P*%S:!r'.di + 0(a?),

where 5° denotes the immersed surface in the equilibrium position, and
A, water plane area of the ship.

Next we express the forces and moments for the oscillatory motion,
up to terms of order a, in the dimensionless form,

—;:f;'x‘l‘ Rc(er':d )= -Re[//s,picos(g,x)ds o-i¢t 1,

3 . iy - .‘.
(11.5) _&:_gYT Re(Fye"“ )= -Re[//a.p'zcos(n,y)ds e d]"_ :p)Yq Ee(: <t ). t
3 ~k?ARe(e *" ),
—l’a:gz RQ(F’Q -ivt )L -Re[//s.p;cos(ﬂ’z)ds e'ad 1,

and
4 . .
a—p%t?)-: Re(Gxe -at )= Rel //s.p;‘( zcos(n,y)=(y=ye)cos(n,z))dsS it ]
- %/fk(z" + g-.;)idxdz Re(e"'dt),

K4 .
(11.6) m Re(Gye

"‘t) Re[//s.p;(xcos(ﬂ,z)-zcos(ﬂ,x)dS e -iot 1,



9

4
;;8-561- Re(G o9t )= Re( /f .pb((y-y.)coa(n_,x)-xcos(n,y))ds o-ivt ]

1 s*3 -iat
- k//‘\(x2 +3 )dxdz Re(e™*?* ),
Now we seek to express the oscillatory forces and moments as,

Re(F 0% )= A YA L, Re(c oiot)m T 35 A 36 weo [[(5%03 Jakez,

xxx

(I1.7) Re(F e -iot)y, -ﬁyﬁ-ﬂy§+ﬁgae(.-‘“ y-pelk, ne(cy,-"‘ )= 135 A3,
Re(E, 0" Jm 3N 2, Ro(G 07 )n -1 3 3B v [f(7e5 ez,

where ¥ and I are called the added mass and added moment of inertia, re-
sepectively, while N and H are called the damping factors for translation
and rotation, respectively.

The substitution of (I.4) and (I.6) in (1I.7) ylields,

H /AW 2 -iet
Re(F e "¢ )= aRe[(d M N ) e 1,

Re( Fye -iot )= aRe[( 62My+16N e -iet ]+ﬁgRe( e -iat )-apgRe(Y' PEN [ )A,

y

xa X< X<

Re(F e ¥t ). aRe[(62M7+idN -iot )
(11.8)

Re(G =0t YugRe( (621 HeH )— 9' -ist ]-apg!le(e' 2 g-igt ) // (;2-0% )dxdz,

e
2

(A a glg-ict
Re(Gye )aRe[(d"IyﬁéHy); Gye 1,

Re(G_o"i%% )=aRe( (¢*_+idH )2 6)e IS J-apphe(6] & o idt) Jf p (3442 Yaxaz,

hence in the dimensionless form,

l

M
—a‘;—-{r te(F_e 39 )= ki e +1—-) etidt 1,
H
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___st Re(F_e'% )= k*R [(—ﬁl jl ot 1, KOE -t
Y e(F e e 5 +1p°_) ° ]W Re(e )

~k2kRe(e "9t ),

M
k’ _‘“ - 3 2 Z -:'t
YAl Re(er )= k3Re[( 'y "‘1—9‘) e 1,

o r ﬁ . 'Y Y
(11.9) :5::7‘91’ Re(G,e it )ak*Re( ( _p')S "'1;3‘) oot )- T]E'//A(zz‘*% ﬁdxdznc(e"" ),

1 fi
k4 -iat -
m n.(oy. ot )ui4Re[( —pl +1p—§) e-iot ),

. ! f . '
-——e-rap:: T Re(G e “i0t Yuk4Re[ ( —pi +13-?’) e-ift). % //A("z* % gdxdzl!e( emi8t),

Therefore, equating (I1.5) and (II.6) to (II.9) we obtain,
K /o =- //s.(p'l),.cm(n.x)ds. k'ﬂ,/%--//,.(p'l)ieos(g.x)ds.
A /o == ffLo(ph) cos(mmlas, KR Jagm-f],.(pY) cos(n,y)es,
kM, /o --//,.(p;)rcoS(g,z)dS, k‘ﬂz/pc"//,-(P;)icos(p_,z)ds,
(11.10) k‘fx/p -//8.(9,")1.[zcos(g,y)-(y-y.)cos(n,z)]ds.
KT, /o= [,a(p}),[2c08(n,7)=(y=ye)con(n, ) 1as,
k‘fy/p -//s.(p;)rfxcoa(g.z)-zcosm,x)]dS.
k‘ﬁ}/p&-//s,(p;)i[xcos(ﬂ,z)-zcos(ﬂ,x)]dS,
k‘fz/o -//s.(pg)r[(y-y.)COS(g,x)-xcos(n,y)]ds.

k‘ﬁz/Dé‘/A. (Pé)i[(y-y.)cos(ﬂ,x)-xcos(ﬂ,y) 1ds,
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where the pressure function p(x,y,z) is resolved to the real and imaginary

parts as pJ - (pj)r + i(PJ)i J=1,2,...6.

We proceed to consider the shallow draft approximation. First we re-
mark that the smallness of draft means the ratio of actual draft to the
wave length is small., Therefore, all quantities are to be developed as a
power series in ¢ =2xe/A .

Let the profile of a ship of small draft be,

(11.11) y = e5'(x,2) -a<x<a, =b<z<b,
Here S'(x,z) satisfies the following geometric conditions:
$'(0,0) = 1, S'(x,2z) = S'(~x,2), s'(x,2) = s'(x,=2).

since [145245% = 1 - -%2[(5"()%(5;)2] 53 (-1)"e*"q [(5})2+(s))17,

m=
we obtain,
< o [-es) + 0(e2)] 2 + [ 1 40(e2)) <2 + [~es! + 0(e?)) 2
an “x ax ay z dz °*

If we call the ripght hand members of (1.20) RJ(x,z) J=1,2,...6,
these can be expanded in the form,

[o2)
m=0
The first few terms are,
Ri(x,z) = 0, Rﬁ(x,z) -1, R;(x,z) =0, Ri(x,z) m~z,
(11.12)
R;(x,z) =0, Ra(x,z) = X, eee o

Next let us assume that the pressure can be expanded in the form,

[40]
(11.13) p.(x,y,2) = >_ €pi(x,y,2) 3=1,2,...6.
j 2 ©P



By Taylor's theorem the function p'; can be expressed as,

J[x,cs (x,2),2] -Z—r [es'(x,2)I" -- (x,O,z)

Now we can write the left hand members of (1.20) up to order e as,

1

X 2
[~eS] + 0(e?)) Eg-l-‘- e[5! (x,2)1"

p?(x,o,z)

9
x3y"

1 1 n+l
mé (")
(I1.14) +[1+0(e?)) 2 Z.n S (x,2))" a—ﬁT P';(x,O.l)

5

[ees! + 0(c1)] 3= 3 ke ™ 7(x,0,8)
+ (=5 + O(e g ¢ x,0,8
i == azay ’

- R3(x,z) + cRS(x,z) on y=eS'(x,z).

Equating the coefficient of the like powers of ¢ we obtain,
ap'(x,o,z)
apl(x,0,s) ap*(x,0,2) ops(x,0,2) *p%(x,0,z)
_J__’._’_ RJ(x.g)#S' 12 ~0-S'z A s - s! 100 o
dy ax oz 3y?
Nore generally the boundary condition for pg is of the form,
n
ap,(x,0,%)
—%— - Rg(x,z) + Eg within the water plane of the ship.

Here Eg consists of p§ for k< n=1 and their derivatives evaluated at y = O,
Therefore pg can be determined recursively by solving boundary value pro-
blems of the following form:

Find a function w(x,y,z) such that,

(11.15) Tw -0 in y < 0, outside the ship,
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(11.16) w, = W= 0 on y =0, outside the ship,
(11.17) vy = h(x,z) on y =0, within the hull of the ship,
(11.18) w - E%l oV oikr o O(%) as r »ow,

Note that h(x,z) is a given function, and for w = p3 in particular it
is given by (11.12).

We again make a change of independent and dependent variables by
introducing,

X=x/a, .y"Y/a: fT=z2/a,
(11.19) w(x,y,2) = a V(x/a, y/a, z/a) where awka ,

Then the boundary value problem becomes:
Find a function V(X,¥,Z) such that,

(I1,20) V3V =0 in ¥ < 0, outside the ship,

(11,21) vy ~aV=0 on ¥=0, outside the ship,

(11.22) vi = h(%X,2) on ¥ = 0, within the hull of the ship,
(11.23) v-50Q F ol od) asFaw.

Here a comment on the change of variables is in order. Since x = kx and
am= k;, the X corresponds to the ratio of uctual co-ordinate X to the half
length of the ship a . Thus in the new boundary value problem all length
dimer.sions have been made dimensionless by dividing with the half length
of the ship instead of the wave length.

Now we turn to the determination of the added mass or added moment
of inertia and the damping factor for a ship of small draft. Since we now
have Yo= O(e), cos(n,x) = -cs,'( + 0(c?), cos(n,y) = 1+ 0(¢?), and

5) + 0(e*), the following expressions can be found from (II1.10).

cos(n,z) = -¢5;
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Note that for convenience we adopt the notation p J(x,y,z) for previously
introduced pB(x,y,z). S® is in this case a repion in the x=-z plane,

o /o == J[ [P (x,¥,2)] con(n,x)ds

a[ hd R ]
'/L'{[pi(x’z)]rﬂs' Pg(x 2)].

+e[p)(x,3)] Jes)ds= o(e),
similarly R /o0& == Jf [P, (x,¥,2)] con(n,x)as= O(e),
k’ﬁy/o -- //l,.[pz(x,y.z)]rcoa(n,y)ds
= /L{[pé(x.z)]rﬂs'i[l‘%-;x—’zl]—r- +c[p5(x,z)]r}d8-- /L.[pg(x.z)]rds.
similarly R /og == J[ 4o [P (x,¥,2) ], cos(n,y)ds== //,.[pi(x.z)]ids.
K*R_/p --//s.[p3(X.y,z)]rooa(n,z)dS
- //,.{[pg(x,z)lrus'ﬂ’%-;f-’i)k +elp)(x,)] Jes}as= o(e),
similarly 08 _/og == [[..(p,(x,y,2)) cos(n,z)ds= O(e),

(11.24)
k‘fx/o - //,.[P,‘(X.Y.z)],.[zcos(n.y)-chS(_q,z)lct‘i

-/A.[P;(X.z)]r( z*eS'cS;)dS-//s. z(p}(x,2)],8S,
k‘ﬂx/od - //s.lph(X.y.z)11[zcos(g.y)-ycos(g.z)]ds- /L. S[p,:(x.z)]ids,
k‘f/p "//s.[PS(X,Y.Z)]r[XCOS(Q,Z)-zcos(Q,X)]dS
-//5.(p;(x,z)]r(-ch'+ch')dS- o(e),

k‘ﬁy/pd -//s,[ps(x,y,z)]i[xcos(_rl,z)-zcos(.rl,x)]ds-o(c),
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k4iz/p - ﬂa.[pf,(x,y,z)]r[ycoa(g,x)-xcos(ﬂ,y)]ds

= J[,+(pg(x,2)] (5" €5} = x)asm=[[, xIp3(x,2)] g,
kﬂ.}z/Pd -j/s.[Pb(X,Y,z)]i[ycoe(g,x)-xcoa(ﬂ,y)]dS-- //s-"[PZ("””i"S-

Hence, in the dimensionless form we obtain the added mass and damping

factor for heave as,

M H/odd = - 2f[ips(%,D) 5,
(11.25)
N N /o6 - Lffitny(s,D,05,

the added moment of inertia and damping factor for roll as,

-1/t 1% (o0 s,
(11.26)
M= A foat- Lffo % toy(%,0), 05,

and the added moment of inertia and damping factor for pitch as,

Iz- iz/D;"' - %//5 b4 [Pa(;:-i)]rdsn

(11.27)

H,= Hz/pa‘d J; x (pg(x,2)) ds,
where T is the image of S° under th: transformition € = x/a , % = z/a.
By (I1.19) we write, p3(x,y,z) = aVJ(x/a,y/a,z/a) J = 2,4,6,

then from (11.22) we find,

v
-

(11.28) v;.(z,o,s) -1, v;.(‘i',o,‘i)- z, v;a,o,a)- % on

and from (I1,21) we have,
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(11.29) v§(z,o.z) -avJ(%,0,7) = 0§ = 2,4,6, outside 3.

III. Integral Representation.

We will discuss here the integral representation of the solution
of boundary value problems for a surface obstacle of negligible draft.
Conaider a region bounded by the surface of the ship and the free sure
face., We shall show that for some function f(X,Z) defined over the

surface of the ahip,ggt.he potential at any point (X,¥,%Z) in the region
is given by,

(111.1) V%55 = 25 (F0 «XFEE0E) ot

Here G(X,¥,%,E,0,) represent the Green's function given in [1] eva-
luated at ?- 0, which can be expressed as,

(111.2) 0(5?.57.7.{.01) "%-"'%a%:—: eﬂ:‘i JO(B;) as,
[+

.é_ﬂ;r-é%% ¥ J_(8F) a8,
o

o

where the integral sipgn %o is to be understood as integration along
the positive real axis except for an arc in the lower half plane to
avoid the positive real root g = a of the denominator. Also,
~ oY ~ 5 e’ -~
F= f(!-g)zi-(i-{)z ,and R = J ¥24¥% , hence R denotes the distance from
a point (X,¥,%) in the regio: to a point (§,0,f) on the surface of the
ship. Jo(sﬂ is the zero order Bessel function of the first kind.

From (II1.2) we see that,

d 2 ~
(111.3) Gy-aG-wﬂ» in ¥<O0.
Now we define the following integrals,

M(%,5,%) = o~ [f5 1,0 FaZai,
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U5,%) = -] 5 HEE HET,5) aF T,

where

H(X,¥,%) = m—-z—“-J( 7) oY
X,¥,% 5o Jo(BF) &7 o8

[}

It follows from (III.1l) that V(X,7,2) = W(X,¥,Z) + L(X,¥,%Z).

For a function f(i,i) continuous on S the integral L satisfies the condi-
tion (11.20), while W + L satisfies the condition (II.23).

From (I1I.3) we have,

v.y.(i,y,'i) - aV(%,¥,2) = wy(i','i,‘i in §<0.

By a theorem of the potential theory,

1im Wy(i',?,'z') - £(%,%) on 5,
g. :g =0 outside 3,
hence,
(111.4) Vy(‘i(,o,"z') - aV(%,0,%) = I(X,%) on §,
(111.5) v;,(i’,o,z) - aV¥(%,0,Z) = O outside S.

From (11.22) it can be seen that the potential V(X,¥,Z) given by (IIIl.l)
will be the solution of our boundary value problem if f(X,Z) is chosen
as a solution of the following integral equation,

h(X,z) - aV(X,0,z) = £(%,%),
or,

(111.6) 0(%,3) + = [[ 5 (6D G(KE,ED aF a¥ = h(%,2).

Observe that the zero draft approximation leads to the kernel being G
jtself rather than the normal derivative of G as in [1].
Next we calculate the kernel of the integral equation explicitly.
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From (111.2) we have,

- 2 m’o(pf)
(I11.7)  G(%,0,5,,0,8) =&+ 23)(1

[o] ﬁ-&

dpg

[+ ]

o (BF)
-~ 2 °
re Jo(Br) dag + 2as£

-%"‘23 dp.

8 p2=a?

Let us express (I11I,7) as,

(I11.8)  G(%,0,%,%,0,%) = §+ 2al, + 25°L,,,

where
o BJ_(BF) o J_(p¥)
Il-§ —.—o——— dﬂ, and 12- %——-—o-(-a-—— ds.
o (p-a)(p+a) o (B=a)(p+a)
“e have
o BJ _(BF) - BJ_(BF) o BJ (pF
(111.9) —— -}a C_O-_r— dp + j%.)o(af-') +f _?_o-(_ﬂi.
o (p-a)(p+a) o (p-a)(p+a)

a+e(p-a)(p+a)

- BHIYBF) o BHYBE)
- 1-3\)0(3?) + Re[ja e——-q-——— +/a P °’(p

e (]
o(p=-a)(p+a) +e(p~a)(p+a)
for small positive €. ©

Next let us consider the integral -‘f; pH(B%)/(p~a)(B+a)dd inte=~

grated along the real axis except for an arc runring above the root B = a,
then we obtain,

o pHO(BF) g-c BHI(BF)
(111.10) ———dp =

BHY(BF)
B ———da+i%“‘:(a?) +/° el
o (B=a)(B+a) o (B=a)(p+a)

a+e(p-a)(p+a)
-c  BHY(pBF) HYpF)
- 11‘240’(8?) + ; c_...P._:_dg .,,ZO_B_°-‘.3_._
o(p=-a)(p+a) +e(B~a)(p+a)
From (111.9) and (111.10) we find,
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© pm)( ~
(I11.11) 1, = 35 J_(aF) + Re[iz; H(aF) +,j\( ‘;(ur)) a8)
o(f~a)(B+a
i" J (aF) n Y (af) + R « ﬂHm(Bl.") 4
=13 ar) =% ar) + Re 8.
s e (p-a)(B+a)

Here we can deform the path of integration into the positive imaginary
axis by setting B = 11, then Il becomes,

o H?,)( i‘[?‘)

T - =
R TR R ST RS rywembl
n ~ n - 2 @ i‘lKo(‘ﬁ:
_i_J(ar)-_y( )-R[- ]—-————d ].
2 0 2 To'8r en A ,[2+82 1

Observing that the integrand is purely imaginary we now express I] as,

(111.12) I~ '5-[ 1J (a¥) = Y (aF) 1.

If the path of integration runs below the root f = a, for 12 we

obtain, a-e  HY(BF) o HYBF)
(IT1,13) I, = 15’3{- J (aF) + Re[} — +/ —_ )
o (B=a)(p+a) at+e(p=-a)(B+a)

Repeating the same process employed to obtain (I11.10) we find,

n i m  HXBF)
(111.14) 12 - iz Jo(aF) ~ 5a Yo(a'r"') + Re;ﬁ —==--—— df.
\B=a)(B+a)

\/hen the path is deformed into the positive imapinary axis, 12 becomes,

© ~
K (YF)
. ~ n ~ 2 o
12 = i Jo(ar) ~ %a Yo(ar) - Re[; ] —:——-T— d'z ).
(o} [ + a

Therefore by a result in (7] we find,



" -~ n ~ L -~ -
(11T1.15) I, = i%s Jo(ar) " 3a Yo(ar)  Sa [So(ar) - Yo(ar)]

n .

-5 [1J°(a?) - So(a?)].
Finally from (III.12) and (III.15) we obtain,
(111.16) G(X,%,§,%) = Ftaaz [iJo(ai‘)-Yo(ar-)] + 2&2—} [1J°(ar)-60(ar)]
- § - nalY_(aF) + 5 _(aF) - 120 (a¥)],

where Yo(a?) denotes the zero order Bessel function of the second kind,
and So(a?) » the zero order Struve function, respectively. Thus, the
kernel of the integral equation can be evaluated explicitly and indeed
this is another reason for introducing the shallow draft approximation.

Here we observe that as aFf + So(a'x'")::Yo(a?-), hence the Green's

function given by (I11.16) becomes,

G(%,7,T,8) = £ - 2alY (aF) - J_(aF)]

~ 2 2na[ sin(afn/b) _ , cos(aFfn/y) ]
¥ Jn(a¥) /2 Jr(af)/2

2 iofTE SeF)

According to the Fredholm theory the integral equation (III.6)
will be soluble if the corresponding homogeneous equation, that is,

(1171.17) £o(%,2) + E?//‘i r+(£,0)6(%,%,E,8) dEdf =0

has only the trivial solution, f°*(X,z) = O.
It has been shown in [1] that if f® is a solution of (I11.17) then

@530 = 2 [ @D dEmIEED 6 oF,

vanishes identially in y < O,
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Since V*(X,¥,%) vanishes, by (III.4) f°(X,Z) must also vanish. Hence the
integral equation (III.6) is soluble, and we shall have a solution for
our boundary value problem in the form of (III.l).
When the solution of the integral equation f(X,%Z) is found, we want to
determine the added mass and added moment of inertia as well as the damp-~
ing factors. By substituting (11.28) in (III.4) we find the pressures are
related to the density function f(X,Z) as,

(111.31) py = a¥(X,0,%) = 1 - £%(%,3)  for heave,

(111.32) pz - aV"(i,O,'i) -7 - fl‘(i,'i) for roll,
6 o~ ~ -~ 6 -~ e

(111.33) pg = aVv (%,0,2) = X = £(X,%) for pitch,

where PU(%,5) = A58 + 1 1)(x%3 3 = 2,4,6.

Therefore we obtain from (I1I.31) and (I1.25),

1 2/
M- -;/[g[ 1 - 2(%,9) s,
(111.34)

1 [ 2,0
N = a./ 5 fi(x,z) ds for heave,

from (111.32) and (11.26),

1 - ~ ~ ~
= Yffsz07-chwm s,
(I11.35) 1
H == 3//5. z fl;(i',‘i') ds for roll,

and from (III.33) and (11.27),

1= -iff 50T 5D e,
(111.36)

1 ~ b/n =y . .
H, = 3//5 x fi(x,z) d3 for pitch.
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IV, Develcpment of Asymptotic Solution

The inapection of Green's function given by (II1.16) shows that
it is a function of a parameter a, hence the solution of the integral
equation (I111.6) must depend upon a. We develop asymptotic solution for
small a in this section prior to treating a numerical procedure,
The asymptotic development for the solution of two dimensiocnal problem
is presented in [6].

The functions appearing in (I11I,.16) have expansions of the follow=

ing form,

5 (aF) = > L (aF -g a (F) a2,

m=0 (m})?
ey L 2 e -1)" bl 2 o 221
bo(ar)=;Z (1) Z’a -T2 B
m=0 [1,3’00(2“"'1)] m=0
(1v.1) o 1, ~ 2m
v (aF) = 2 (1op & +5) 9 (a0)e 3o (™I 32 1) L (2
me=1 n=1 (m)*
2 X o 2M e L ey L 2m
=;[loga:{_—0:l\m(r) a +%Cm(r) a“").
Hence (1I1,16) can be expressed as,
(1v.2) G(X, z,‘_',l;a) - : - 2(log a‘_/_'__ A (r) a2m + Z C ('x") a&n'tl
m=0 m=0
= ey L 2me2 2m+1
+/_‘._Bm(r)a -mZ A()
m=0 m=0
where, ~ ;h
Ao =], A1= 1) Azrmd ’ see
~3 5
B =T, Bl = - -.1-:3— » BZ 1,3’5, cee

F o oGl-- ELH)E
Co .:x‘.' 10[’,5 » (‘1 (” 010{: 2 1 ) 2¢ » ses o
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Rearranging power series we may write,

(1v.3) aG(%,%,%,6:a) = 2 Z aa 1, 2 Z ﬁ 32n+2 log a
n=0 n=0

with new coefficients,

P

r
O--l’ 51'(): 92"5) 53-0’ see o

Now we proceed to develop the asymptotic solution of the integral
equation in the form,

(1v.4) £(x,2) oo Z Z £ ai (a loga)" .
i=0 j=0
Note that the power product a (a 105;1;)‘1 can be always ordered as to their
rate of vanishing as a tends to zero, that is,
i' Jl
1im 2?12-125213— =0 if i'+)* > 1+ 3, or i'+)= i+ Jand DI,
a (a loga)

Substituting (IV.3) and (IV.4) in the integral term of (I11.6) we obtain,

(ves) 2[5 (BB 6(2,5,LTe) af af

® o o
- -?%-/ISZ 22 [‘1"1'13871“]&“"(lolu;a)J

1=0 30 n=0
+ 8.1y Jan+2+1+j( loga)JH] dzda
P*q qQ o
A (loga)? afdl .
R a0

Here we otserve that indices arc related as,
n+l+itj = p+q, and J=q,

n+2+i+j = p+q, and J + 1 =q,

|
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therefore in both cases n = p=l-i 8o that we find,

=1 =1
v. -5 € q*
(1v.6) Apq = &5 %1411 q 1L-o Ppe1-171,q-1

Writing the right hand side of (I11.6) in a power series,

(2]
n(X,%a) = > hn(i,i a",
n=0

we can express the integral equation in power series as,

® @ ptq q, 1 ® o p+q © p
(Iv.7) pz_.;qz-%rpqa (1loga) &/[%qz_o‘\pqa (loga)q-ghpa on .

If q =0, (IV.?7) yields,

8
1
(1v.8) fpo - hp - .2?/['5 ;t_o ap-l-ifio af dT,
and if q ¥ 0,
R E
(1v.9) foa = /3 ; (ap_l_ifiqu_l_iriq_l) df dF

These expressions are recursion formulas which permit the determination of
the coefficients fid(i,i) in (IV.4) by means of iteration. For reference,
we write down the first few terms, from (IV.8)

fo0 = ho »

h
-1 FdF = h. = ._1// O 4r4F
flo " M zt//a % foo 4298 = ) = /[ ¥ dldC,

1 ~. ~
(1v.10) f2° - h2 - -2-“-//5 (a1f°°+ uoflo) dedf

- h ~
hy = 5 [fg [in=F-log Dh + 3 (n,- 51//5 ¥ d7dg )] ofds ,

1 =
30 h3 - En‘//é' (“z"oo* alflo+ aof20) dadé

)
a
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- ny 3 [l lPngtineteton Bny- 2 ff Pt )
+ %{ h,- 5%//.5[(11:-8'-103 %)ho-r %(hl
2 ([ ot )1kt }) o .

We find from (IV.9) foq =0 for all q, and

=T —/ 5 (8Tt Bofog) dfaf - 1//3 Ro dgal,
(V1) £, = == [[5 (ayf o+ B.f,,) dfdE = o,
-5 [[5 (a1fo1* %1% Prfog* Pofao) dRAE

- - 2[5 ¥ s nedtat )-n- 2 ;%3-"3 )] dBag .

The above process ultimately leads to (IV.4). Ve say f(X,Z:a) has an es=
timate of degree (i,J) if,

£(%,Z:a) = P(a, a loga) + o[ai(a loga)J],
where ? is a polynominal of degree (i,3j). From (IV.3) we have,
aG = =2 a®loga + o(a®loga),

hence we see that the product of aG with a polynominal of degree (1,))
is a polynominal of degree (i+l,j+l) plus terms o[ai*l(a loga)d+1].
Suppose then that we have shown f(X,%Z:a) to have an estimate of degree
(1,3). Substituting this estimate in the integral in (IV.7) we obtain

a polynominal of degree (i+l,j+1) plus terms of o[ai l(n loga)J l], with
coefficients determined by the known quantities foo, veey iJ' Riight
hand side of (IV,7) has estimates of degree (i,0) for all i, hence (IV.7)
ylelds for f(%X,%:a) an estimate of degree (i+1,j+1). Then substituting
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the series (IV.4) and (IV.3) in the integral representation (II1.l) it
can be seen that V(X,¥,%:a) has the form,

© o N 3
aV(%,¥,%:a)co ZZ Vi(!,'i,"z') a(a loga)Y .
=0 55

Now retaining the terms with h_ in the coefficients f, J(S'(',"z')
we write,

s, 2 2 3
(1v.12) f(X,Z:a)co f ot af .t a(a loga)fll+ af, + a (a loga)f21+ a’f

30’

where roo - h° ’

£ = -_l// o df d?
10° " =/ls ¥ &
1
£y = 5effs ho dE o,
h
1 ud 1 0
(1v.13) 0% = -2;//§ [(in=)f-log Z)h - m?/[s ¥ dEdg )1akeZ ,
h
1 1 /’ v, 1 0. x.y s
tne -5/l G /aho ofdf + /S’Fdzd‘ Jogdt ,
~ h
- 1 ~ r 1 0 F.>
f10% = 5 //g [(-r)ho-(in-a"-log 3) 5 //3 x dEdg
[ d h
1{ 1 r 1 o ~ ~
- ,{-{3_“— //s [(in-F-log S)h + 5% //5 ¥ d{d’i]d‘{d;}]d{dg .
According to (11.12) h, is equal to 1 for the heave, Z for the roll, and
X for the pitch. Hence the integral )0(5 hod{dz becomes the water plane
area in the case of heave, and vanishes in other cases.
Substituting the asymptotic solution (IV.12) in (1II1.34) -~ (I1I1.36)

we obtain the first non-vanishing term of the normalized added mass,

added moment of inertia, and damping, factor as,

M, - - :}//5. ( -2{‘1//3 % df dF ) d%d3 = 0(1),

Ny = - %//§ ( %i//?‘ df df ) dXdZ = a §* = 0(a),
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I - -}//g ( -?%[[5 = d%dC ) % dxd7 = 0(1),

(1v.14) 3
H = - %//5 [ %//g ( %/é. % dfdE )afdf ) 7 dXd% = 0(a®),

1(

~

I, = -<%/7% ( 5%/7% 2 dfdf ) X dXdz = 0(1),

= 3 CE s Chffp F o0 e ) % e - o,

Note that Ny is equal to the product of the parameter a and the square
of normmalized water plane area 5. As the parameter a tends to zero, Ny’
Hx’ and Hz vanish while My’ Ix’ and Iz approach non-zero constants.

This is to be compared with the situation in two dimensional case where N
becomes a constant while My tends to infinity as shown in (5] and [6].
These estimates indicate that the strip method shown in [5] is not expect=-

ed to yield accurate results for low frequency.

V. Numerical Procedure

le suppose the surface of a flat ship to be an ellipse given by
(x/3)3+ (2/6)? = 1, or in normalized co-ordinates X° +(%/6)% = 1 with
b= 5/5 , and develop a numerical procedure by which the value of un-
known function f(¥,%Z) in the intepral equation (1I1.6) can be determined
approximately. Ve replace the equation (1I1.6) by a set of linecar equa-
tions relating the values of f(X,Z) at chosen pivotal points on the
elliptic surface. Then the surface inteprals in the linear equations are

evaluated by Simpson's rule given by,

d (b n
(V.1) } J (%,Z)d%1Z = { (h > le(xli dZ= g D[h Z Cf( ,zm)]
c’/a 1-:0 10

for a continuous function f(¥,%). Here h =(b-a)/p, k=(d=c)/q, and

Cl takes the valuns 1/3 for 1=0 or p, 4/3 for 1=2n, and 2/3 for 1=2n+l,
respectively. Dm takes the values 1/3 for m=0 or q, 4/3 for m-2n, and
2/3 for m=2n+l, respectively,

Substitution of (111.16) ir (111.6) yields,
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201 (X, 3)410, (X,2) ]+ = flgtrr(l,f)uri(z,t)]{% —alY_(af)+s_(aF)-12 (aF)1} oEaE
= 2n(%,3)  on §F = S(%,%).

If we write the real and imaginary parts separately, the following pair of
equations will result.

28 (%,0)+ &fcfe (BB 3 -2 108(a2)- T2R(aP) 11, (F,Emad_(aF)} oot =2n(%,3),
(v.2)

2, (%, 2 [[Lfe (£,8)mas_(aFyes (EO § == Loa(aF)- E2r(af)1} ok = o,
where R(aF) = Y;(a?) + So(aF) - %~10g(a?).

We now establish a lattice on the elliptic surface §'by dividing
the long axis into eight equal intervals h, and the vertical ordinates
parallel to the short axis into four equal intervals k(X), that is,

h = 1/4 and k(X) = b JI-X? /2. In the course of additional computations
for improving numerical results these intervals are bisected to yleld a
finer grid. However we only present here the procedure for original la=-
ttice. In this instance, each pivotal point can be identified by the co=-
ordinates i& and 23 where §i-(i-&)/& i=0,1,...8, and Ej(ii)-

b 45‘-2-,[1—-?1 J=0,1,...4. To determine the values of f(X,Z), we consider
the equation (V.2) only at thirteen pivotal points contained in one qua=-
drant. [Note that for the fine lattice, the pivotal points contained in
one quadrant are ferty-one.] Vhen the values of f(X,Z) at these points
are known, the symmetry or anti-symmetry properties of the function will
enable us to determine the values at the rest of pivotal points.

As T denotes the distance from a fixed pivotal point (ii,ij) to
any pivotal point (E,Z) = (ii,i;) where 1=0,1,...8, and m=0,1,...4,

we find the integrands,
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(ED/FDHED? and (ED) 10m (7DD

possess a sinpgularity at (i&,ij)-(ii,im). Nevertheless, the singular
integrals associated with these integrands do exist. We will presently
show how these integrals can be evaluated.

(1) Treatment of the intepral -
1,(%,,% )-][ (B8 gz
(& ~B)*+ (20"

We choose the shortest distance LS between any two neighboring

pivotal points and draw a circular region about the fixed pivotal point.
If the integral Il(i;,ij) i- evaluated over the region S=-5, and the ex-
cluded circular region & separately,

HEE) _ gpaf WERD // aZdf ’
-"?)2+(z -7)? (x -2)“+(z ~£)?

(ve3)  I(%;,%y)=

b

whare the function f(X,%Z) is regarded as a constant over the region b.

Since the intepral over the circular region becomes,

21
ol
jo }o i,d?’r‘d() = 2rr_,
we obtain,

(S RCA SR SR ("""
SR P D)

Now suppose the integral Il(ik’ij) is evaluated by (V.1) assigning a

fictitious value r_ for T at the sinpularity,

s f(‘: :~ )
/[ £ (5,5) ofdf + x; %4 // dEdE
S=b Ei’z)2+(ij’f)2 o b

8 J £(x ,'5 )
= S 3350Chb k) —a———

PRIV AT
(xj xl) +(zj zm)
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where the notation Z 29 denotes the double summation with ¥ =T,
inside the circle, Cl and Dm are the coefficients of Simpson's rule in
the X- and Z~directions, respectively.

Hence we find,

(V.5) fR8) ik x e £(%,,8,)
/ /‘"’J(;i-v%(zj-z)a oo

8 o\ r(il,!m)
+ g g clhnmk(xll,l(jE = .
i

% )2+(% J-i'm)2

Substitution of (V.5) in (V.4) yields,

8 £(%,,% )
(v.6) Il(xi’z;j)z nrof(ii,ijﬁ > Aé._ﬂ C, hD, k(%, ) 1 m
120 me=0 J( %28 7)?

For pivotal points on the boundary, the correction term m-ot'(i'c'1 ,'{J) will
be approximated by one half because the circular region drawn with the
radius r, about such a pivotal point does not make a full circle as the
repion will be sliced off by the boundary of the ellipse.

(11) Treatment of the integral

Bl 100 o [

If the integral 12(5:'1,‘5 J) is evaluated separately over the region
S-5 and & ’

v EEp= [ HED lom [(7,-PE-D* aket

+ f(i'i,i'J) //6 loga j(fi-i)zd-(i:"z)z dgdZ ,

where £(%,Z) is again reparded as constant over the region %.

Sir.ce the integral over the circular region becomes,

2n,r
1 Ff dF Td© = nr(logar_ = i )
olo Of ar o\ ‘ORAT, =2 /»

|
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we have,

(Ve8)  I,(%,,8 )% nr(logar = H0(x,, 8¢ [y, 10088 (%, -D*(E, D700k,

Assigning a fictitious value r, for ¥ at the singularity, and evaluating
Iz(ii,id) by (V.1) we obtain,

Jfses 101088 (%, -D%+(5, )7 dBaZ +1(%,,3 ogar, [[, afek

8
=~ Eg Clthk(:?l)loga ,r(ii-il)2+(id-2'm)2 r(f(l,‘im).

Therefors,
(v.9) //5-6 £(&,€)1loga /(ii-2)2+(ij-z):‘ dgdz = mrglogarof(i'i,'ij)

8
~ .~ 2 fd -~ 2 ~ s~
+ 12-0 Clthk(xl)loga (Ki xl) <0-(zJ zm) f(xl,zm).
Substitution of (V.9) in (V.8) yields,

(V.10) 12(71,23) = - %r(z) f(ii,ij)

+ %:2% C,hh k(%,)1 ,/(3( =R, )2+(Z,=% )% £(R,,% )
e o2 1 TOBR YRR TR R 1°%m’*

Now the application of Simpson's rule (V.l) together with the
singular integral formulae (V.6) and (V.10) enable us to reduce the sct
of integral equation (V.2) to twenty-six (for the original lattice or
eighty=-two for the fine lattice) linear equations relating the values of
fr(i',‘i) and fi(i,'z') at chosen pivotal points.

For convenience we use the following notations,

i

e . £(%;,2,), fm ook

- 1(%,5), Fy - /(*1‘*1)2*(%'7".)2»
(v.11)
Ky~ Ch D k(X)),  and nid . h(%,,Z,).
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We write (V.2) as,

8
(2 +nar°( l- %!-'va)]fi‘1 + %%% Klm[ %lm-a logai'lm- "Taﬁ(ai‘lm)]f‘:;m

>3-
- a? K, J (a¥, )™ o 2pid
1§m-0 Im "o Im™4 ’
(v.12) 8
2 ﬁ 1m (2 + (1 ar)rij
a < m-OKl‘m Jo(a?lm)fr + nar --2-0]1

8
2 1 - n ~ im -
+ = g% Kl ?lm-a logaf, —eﬂz (m-lm)]t‘1 0,

where n is a function of (i,j) which takes the value of 1/2 or 1 . Note
that among the coefficients of Simpson's rule the relation, K
s holds, We further write,

1 ’m* 9‘1 ,m
=K1,5-m %921, 5m

.‘llm = élm- a logaFlm- g-—a-it(a?lm),

H

(v.13)

1m & - _ ar
Hy" = Jo(arlm), and C Aro(l 3o).

Next we shall investigate the charecteristics of linear equations associate
ed with the heave, roll and pitch, respectively:
(i) The case of heave,

Since the function f(X,Z) satisfies the symmetry relations,

1,m_ r9-1,m, 1,m_ fl,S-m

f and f for heave,

the double sums appearing in (V.12) can be expressed as,

8 2
(V.lh) Z i Klmﬂlmflm - i z Klm(Hl9"‘”{1,5"m+H9°l,m*H9‘1,5'm)f1m.
1=0 m=0 1=0 m=0

From (V.13) and (V.14) the linear equations (V.12) for heave becames,
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L 2
iJ , a l,m.1,5-m,9=1,m ,.9=1,5«m,, Im
(2 "'C)fr +t s 12-0 25 Klm(Hl’ +H1’ +H1 ’ +H1 ’ )fr

2
) l,m 1,5-m .. 9=1,m ,.9=1,5-m, 1m
a mi.o Kyn(H5 5 Hy, T, TN - 2,

(v.15) 2
i l,m,,.1 -1 -1 1m

-a? iz Ky, (H3?eHp > R~ Lomyd=La3my el o
1=0 m=O
The coefficient matrix of (V.15) is anti-symmetric, and its elements in
the first and the fourteenth columns and row will vanish except the main
diagonal elements because in the process of the double integration by
(V.1) the function at the both ends of the major axis are not taken into
account.
(1i) The case of roll.
For roll the function f(X,%) satisfies the symmetry relation,

fl’m- f9-1’m , and the anti=symmetry relation rl,m_r9-l,m__fl,S-fn__r9-l,5-m’

therefore the double sums appearing in (V.12) for the roll becomes,

(V.16) Zi Ky W - IZ"ZK (3 Mgl o5 My 9=15m y9=1,5-m) plm
1=0 m=O

From (V.13) and (V.16) the linear equations (V.12) for the roll becomes,

(2 +nC)rH + azz-gx (RLsMLs5 My 9-1om y9-1,5-m) clm
1=0 m=0

2
-a? iLZ "1,“("; 1 >y Lomydls 5""')f =22,
1=0 m=0

(v.17) 2
(2 +nc)f1~1 %ZI-LEK (H My is5""+HZ'1,m.Hz-l,5-m)rim
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Y- l’m 1’5"“ 9‘1’"‘ 9-1 5=m 1m
a ﬁl mlem(}{2 Hy? 7T TN T e T w0,

Here inspection of (V.16) shows that,

Hlnm-Hl’5'm+H9-1’m-H9°l’5'm =0 form=2

(v.18) 2
EEZ (RLomagls5my9=Lom y9=1,5°my 6 por § = 2,

10 m=0

Therefore the coefficient matrix of (V.17) is also anti-symmetric and
in addition to vanishing first and fourteenth columns and rows, from
(v.18) it has zeroes in the (4+3m)th and (17+3m)th columns and rows
except the main diapgonal elements, m here assumes the values 0,1,2,3,
(1:1) The case of pitch.

For pitch the function f(X,Z) has the symmetry property, pLom

_fl,Sqn’ and the anti-symmetry property,

therefore the double sums appearing in (V.12) for the pitch becomes,

8 L2
Im,1m 1,m1,5-m_,9=1,m_ 9=1,5-m, 1m
(v.19) Zﬁxmn £ -}"‘_}_‘_xlm(u»m’ H9-1om 4y 9-1,5-m) 1m
1=0 m=0 1=0 m=O
From (V.13) and (V.19) we write the linear equations (V.12) for pitch as,

fLom_gl,5m__p9-1,m__ 9-1,5-m

2
i) gi 1,m 1,5-m_ 9-1,m_ 9=1,5-m, .Im
(2 +nC)tr + s Z- mE-OE Klm(Hl +H1’ Hl -l'l1 )fr

2
lm .1,5-m ,,9=-1,m ,,9=1,5m
—a? 35 Kk (WMl S Py hmy 2oLy e oy

(V.20)

2
ij ., a l,m .1,5-m ., 9=1,m ,.9=1,5-m
(2 +nC)fi + -y EE K] (Hl’ 4."1’ -Hl ’ -Hl ’ )fim

2
a2 1,m . 1,5-m_ 9=1,m_.9=1,5-m Im _
a > Klm(“z' 2T H H, )" = o,

Here it can be seen that,
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ploMuydoS Mo 9=1m y9=1,5m _ 6 for 1 =4, 7
(v.o21) ,
iz (HLMyylsS M 9=Lum 9=1,5my o oL
1=0 m=0
Therefore the coefficient matrix of (V.20) is anti-symmetric, and from
(V.21) it has vanishing elements in ‘he (11+m)th and (24+m) th columns
and rows except the main diagonal elements, m here assumes the values
0,1,2.

The integral equation (V.6) describing the forced oscillation of
a flat ship is thus replaced by three sets of linear equations. For vari-
ous values of the parameter a= o""E/g -ZR;/.A » we can determine the values
of f(%,%) by solving these equations, Actual steps of the computation work
for obtaining the solution consist of :
(1) Determination of the distance r from individual pivotal point to any
pivotal point on the given lattice.
(2) Calculation of functions appearing in the coefficients of the linear
equations either by direct evaluation or by interpolation from the given
table,
(3) Summation of the coefficients and grouping of the matrix in accordance
with the type of motion,
(4,) Numerical solution of linear equations either by the elimination process
or iteration process.

In step (1) when the distance ¥ becomes zero, it is replaced by the
smallest distance between two neighboring pivotal points Ty s and in
step (2) the functions, 1/F and logaF are evaluated directly and the func-
tion R(a¥)= Yo(aF) + So(aF) - %-loga? and Jo(aF) are evaluated by means of
parabolic interpolation from a pre-arranged table [Table-1]. In step (4)
successive elimination of unknowns based on the algorithm of Gauss is used.
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Input for Determination of Coefficients of Linear Equation

a? R(a¥) Jo(a‘i‘) a¥  R(a¥) Jo(a?) a¥ R(aY) Jo(a'i")
0,00 ~0,0738 11,0000 2.25 0,7734  0,0828 L.50 =1.,2107 =0.3205
0.05 «0,0401 0,9994  2.30 0.7552  0,0555 L.55 =1,2487 -0.3087
0,10 «=0,0045 0,9975 2.35 0,7303 0.0288 L.,60 «1,2851 ~0,2961
0.15 0.0320 0,994l 2.40 0.7036 0.0025 L1465 «1.,3200 =0,2830
0.20 00070.4 009900 20’45 0.6751 -0.0232 ho?o "103533 "002693
0,30 0,486 0.9776 2,55 0.6124 =0.0729 L.80 «l,4151 =-0.2L0L
0.35 0.1881 0,9696 2,50 0.,5784 =0,0968 L.35 <=1.4L35 =0,2253
O.hO 0022711 0096021 2 .65 0.5h28 -0.1200 ho90 "1.’1702 -0.2097
O.hs 00267,4 0.9500 2 070 00505,4 -0-11-12!& ho95 '10,4951 "'001938
0.50  0,3059 0,9385 2.75 0,1667 «0.,1641 65,00 =1,5183 ~0,1776
0.55 0.3551 0,9258 2,80 01263 =0,1850 5,05 =1,5398 =0,1611
0,60 0.3831 0.9120 2.85 0,3846 ~0.,2051 5,10 =1,559) =0.1Ll3
0,65 0,4209 0.8971 2.90 0.3L15 =0.2243 5,15 =1.5772 ~0,1274
0.70  0.L579 0,3812 2.95  0,2972 «0,2426 5,20 =1.5933 =0.1103
0.75 o.hoLkh  0.8642 3,00 0,2518 <0,2601 5,25 <=1.,6075 =0,0931
0.80  0,5293 0,8L63 3,05 0,2052 =0,2765 5.30 «1,6199 =0,0758
0.85  0.5631 0,827h  3.10 0.,1576 =0,2921 5.35 =1.6306 =0,0585
0,90  0,5957 0.8075 3,15  0,1093 =0,3066 5,40 =1.63%) =0.0L12
0095 006271 0. 7868 3 020 0.0600 -003202 50&5 "1061163 -0.0ZhO
1,05 0,5852 0,7428  3.30 =0,0507 =0.3LL3 5.55 <1,5552 0.,0102
1,10 0.7121 0,7196 3.35 =0.0917 =0,3548 5.60 =1.6569  0.,0270
1,15 0.,7372 0,6957 3.0 <0.1435 =0.36L3 5.65 =1,6570  0,0L36
1.20 0,7606 0,57T11 3.45 «0,1955 =0,3727 5.70 =1.6555 0.0599
1.25 0.7822 0,6L459 3,50 =0.2478 =0,3801 5.75 =1.6523 0.0760
1.30  0,8019 0.,6201  3.55 =0,3001 ~0.3865 5.80 <=1.,6L75 0,0917
1.,0  0.835h 0,5669 3.65 =0,,052 =0,3960 5,90 =1.6533L 0.1220
145  0.8492 0.5395 3,70 =0.457L4 =0.3992 5.95 -1.62L0  0.1366
1.50 00 8610 0.5118 3 075 "‘005096 -0.’;01)4 6.00 "1.6135 0.15%
1.55 0.8706 0,4838  3.80 =0.5616 ~0,4026 6,05 -1,6014  0,1642
1,50 0,3782 0,455k 3.85 -0,6131 =~0,4027 6.10 -1,5880 0.1773
1,55 0.8836 0,4268  3.90 ~0,66L1 ~0,4018 6,15 -1.5735  0,1898
1,70 0,8868 0.,3980  3.95 ~0,7147 -0,4000 6,20 <=1.56L1  0,2017
1.75 048879 0.3690  L.,00 =0,76Ll =0,3971 6,25 =1,5L09 0.2131
1.80  0.8867 0.3400  L.05 =0,8137 =0.393L 6.30 =1.5230  0,2238
1.85 0.8833  0.3109 L.10 =0,8620 =0.3887 6.35 <-1l.50L1 0.2339
1,95  0,8700 0.2528  L.20 =0,9559 =0,3766 6,15 =1..637 042521
2,00 0,B601 0.2239  Le25 =1,001L4 =0.3692 6,50 =-1,LL21 0,260
2.05 0.8476 0.1951  L.30 =1,0457 =0,3610 6.55 <-1.4200  0,267L
2,10  0.8335 0,1666  L.35 -1.0891 =0,3520 6,50 <-1.3973 0.,27L0
2,15 0.8170 0.1383 Lo -1,1308 ~0,3L423 6.65 -1,3738 0.2799
2,20 0.798L 0,110, L.iS =1.1715 =0,3318 6,70 -1.3501 0.2351



Table 1

37

Input for Determination of Coefficients of Linear Equation

ar R(a¥) Jo(a?) a¥ R(aX¥) J(aF) ef R(al) Jo(a‘:"')
7.55 =0,9437 062593 9,80 =-1,1787 =0.2323 12,05 -1,9763 0.0588
7.70 <=0,8865 0.2346 9.95 =1.,2631 =0,243Lh 12,20 -1.,9548 0,0908
780 =0,8528 0,215k 10,05 =1,3199 <-0,2378 12,30 -1.9435 0.1108
7.85 =0,8375 0.2051 10,10 ~1.3484 =0.2L90 12,35 =1.9339 0.1203
7.90 -008233 0019’411 10.15 "1.3770 -0022196 120'40 -1.923" 0.1296
7.95 <0,8103 0.,1832 10,20 ~1,055 =0,2496 12.45 =1,9121 0.138L
8,00 =0.7983  0,1717 10.25 =1,.338 =0,2490 12.50 -1.8997 0,1469
8,05 ~0,7876 0.,1597 10,30 =1,h620 =0,2477 12,55 ~1.8866 0.1550
8,10 =0,7780 0,475 10,35 ~1,4899 =0,258 12,60 «1,8730 0.1626
8,15 =0,7698  0,1350 10,40 =~1,5176 =0.2h3h 12,65 -1.8568L 0.1698
8420 =0,7627  0.,1222 10,45 ~1.5449 «0,2403 12,70 -1.8,33 0,1766
8425 =0,7570  0,1092 10,50 ~1,5718 =0,2366 12.75 =1.8274 0,1829
8e35 «0.7h94  0,0826 10,60 ~1,62h2 =0,2276 12,85 «1,7940 0,1940
840  «0,TUT7T  0.0692 10,65 <=1.6L96 <=0,2223 12,90 =1,7767 0.,1988
8,50 =0,7480  0,0419 10,75 «=1.,6983 -0.,2101 13,00 «~1,7406 0,2069
8.55 =0,7L9L 0.0283 10,80 «1,7216 =0,2032 13,05 =1,7221 0,2102
8,50 «0,7538 0,046 10,85 <1,7hL42 =0,1959 13.10 =-1,703L  0,2129
8,65 =0,7586  0,0010 10,90 ~1,7660 =0,1881 13,15 =1.,6843 0,2151
8,70 0,769 =0.0125 10,95 =-1,7868 =0,1798 13,20 =1,6652 0.,2167
8.75 =0,7725 «0,0259 11,00 =1.8068 =0,1712 13,25 =1,6L58 0.2178
8.85 <0.791 ~0,0523 11,10 -1,8440 =0,1528 13.35 =-1.6118 0,2183
8.90 "0.8026 .00%53 11.15 -108611 -oonlBO 13.h0 -1.5880 002177
8495 =0,8154 «0,0779 11,20 =1,8770 =0.1330 13.45 -1.5689 0,2166
9,00 =0,8290 =0,0903 11,25 =1,8922 «0.,1227 13.50 <=1.5498 0,2150
9,05 =0.8439 =0.,102) 11,30 -1,9060 =0,1121 13,55 =1,5311 0.2128
9,10 =0,8600 ~0,1142 11.35 -1,9188 «0,1012 13,60 =1.5126 0,2101
9,15 =0.8771 =0,1257 11.L0 =1,9305 =0,0902 13.55 =1..945 0,2069
9625 =0,91L5 <0.,147h 11,50 =1,9503 =0.0677 13.75 =1.L593 0.1990
9,30 =0,9348 =0,1577 11.55 -1,9586 =0.0562 13.80 -1.Lhk25 0.1943
935 =0,9560 =0,167h 11,60 «1,9657 =0.0uL6 13.85 «1,4260 0.1892
9,40  =0,9780 =0,1768 11,65 =1.9713 =0.0330 13,90 =1,4102 0,1836
9,45  =1,0008 «0,1856 11,70 <=1,9761 =0.0213 13.95 <=1.3951 0.1775
9,50 =1,0245 <=0,1939 11,75 =1.,9806 =0,0097 14,00 =-1,3805 0,171
9455  =1,0488 =0,2017 11,80 =1,9820 0,0020 14,05 =1.3867 0,1642
9,60 «1,0739 =0.,2090 11,85 =1,9826 0,0135 1L.,10 =1.3534 0,1570
9065 -1.0995 -0.2157 11.90 -109831 000250 114.15 "1031112 00]1193
9,70 =1,1257 <0,2218 11.95 -1,9821 0,036L 1L.25 -1,3187 0.1331
9,75 =1.,1525 =0,2273 12,00 =1,9796 0.,0477 1L.30 =1.3087 0,12L45
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VI. Discussion of Numerical Kesults

The computations are in terms of two parameters., The first is
the ratio of the short axis to the long axis of the ellipse b =b/a,
and the second parameter is the ratio of the half length of the ship
to the wave length a = 2ra/A = 62a/g. The values of b chosen for the
investipation were 1/8, 1/4, and 1 so that they represent a slim ellip-
se and a circle as limiting cases, The parameter a assumes the values
»/6, »/5, n/l, =/3, 2n/5, =/2, 2r/3, and =.

It was shown in section III that for large argument of af¥, the
asymptotic form of the Greens function contains a trigonometric func~-
tion, that is, (53,005 2/F + 12) Fmafr oHoF- /U)o,
the kernel of the integral equation fluctuates as the frequency of cs-
cillation increases. This implies that to assure equal accuracy we must
take the grid spacing inversely proportional to the frequency. For this
reason, the computations are carried out at first with the original la-
ttice and then with the fine lattice which has the bisected grid apa-
cings.

For each combination of b and a, three set of linear equations
(v.15), (V.17), and (V.20) were solved in order to determine the values
of fr(i,i) and fi(i,i) at chosen pivotal points. Then using Simpson's
rule (V.1) the normalized added mass My and damping factor Ny for heave
were evaluated by (1II.34). Similary, for roll the normalized added mo=-
ment of inertia Ix and damping factor "x were evaluated by (11I1.35),
while for pitch the normalized added moment of inertia I and damping
factor H_ were evaluated by (111.36). In Table 2 the values of M Ny’
Ix’ Hx, 17, and H for a circular disk, b-l, corresponding to various
values of the parameter a are tabulated, In Tibles 3 and 4 the values
of M v Ny, Ix’ Hx’ I 2? and H for elliptic disks of the axes ratio 1/4,
and 1/8 depending upon the parameter a are presented. In these tables,
the values within the parenthesis denote the results obtained by the
use of the oripinal lattice and the other values by the use of the fine
lattice, Note Lhat for the case of elliptic disks the results obtained
by the use of the oripginal lattice are not much different from those by
the use of the fine lattice. However in Table 2 it can be seen that the



Table 2

Added Mass, Added Moment of Inertia, and Damping Factors
for Circular NDisk Bel,

[

= n/6
a=x/5
a=n/l

-x/3

»

=2x/5

a=x/2

a =2n/3

My
2,242
(2.194)
2,129
(2,082)
1.987
(1.943)
1.809
(1.774)
1.706
(1.659)
1.593
(1.582)
1.473
(1.489)
1.341
(1.342)

Ny
0.990
(0.977)
1.016
(1.006)
1.026
(1.021)
1.002
(1.007)
0.968
(0.970)
0.910
(0.923)
0.811
(0.809)
0.628
(0.533)

Ix
0.351
(0.262)
0.415
(0.306)
0.536
(0.385)
0.677
(0.483)
0.126
(0.069)
0,497
(~0.366)
=0.381
(~0.336)
~0.127
(~0.151)

Table 3

Hx
0.032
(0.029)
0.064
(0.055)
0.161
(0.130)
0.651
(0.458)
1.136
(0.874)
0.602
(0.575)
0.167
(0.147)
0.031
(0.001)

Iz
0.335
(0.194)
0.395
(0.232)
0,509
(0.299)
0.650
(0.387)
0.163
(0.125)
«0.469
(=0.277)
=0,370
(=0.316)
-0,138
(=0.190)

Added Mass, Added Moment of Inertia, and Damping Factors
for Elliptic Disk bel/i.

a=n/6

®

- x/5

a=n/l

a=n/3

M
y
0.298
(0.294)
0.288
(0.284)
0.274
(0.270)
0.251
(0.248)

N
y
0.099
(0.097)
0.108
(0.106)
0.119
(0.116)
0.129
(0.127)

Ix
0.0012
(0.0018)
0.0013
{0,0018)
0.0014
(0,0018)
0.0015

(0.0018)

Hx
0.00001
(0.00001)
0.00001
(0.00001)
0.00002
(0.00002)
0.00005

(0.,00005)

I
0.052
(0.040)
0.057
(0.044)
0.065
(0.051)
0.081,
(0.065)
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Hz
0.030
(0.0 3)
0.060
(0,044)
0.150
(0.101)
0.599
(0.338)
1.078
(0.683)
0,601
(0.543)
0.168
(0.178)
0.009
(0.017)

H
0.002
(0.001)
0.003
(00003)
0.007
(0.006)
0.020
(0.016)



Table 3

Added Mass, Added Moment of Inertia, and Damping Factors

=2x/5
- n/2

=2n/3

1
0.235
(0.233)
0,215
(0.213)
0.187
(0.187)
0.154
(0.155)

for Elliptic Disk bel/l.

Ny I H, I,
0.133 0.0017  0.,00010 0,100
(0.131) (0.0018) (0.00008) (0.078)
0.135 0.0019  0.00020  0.102
(0.133) (0.0019) (0.00017) (0.082)
0.132 0.0025  0.00058 «0.041
(0.131) (0.0021) (0.00044) (=0.020)
0.117 0.0032  0.00312 =0,037

(0.118) (0.0023) (0.00184) (=0.040)

Table 4

Added Mass, Added Moment of Inertia, and Damping Factors

- n/6

= x/5

= n/l

=n/3

=2r/5

- n/2

=2n/3

M
y
0.105
(0.107)
0.102
(0.104)
0.098
(0.100)
0.090
(0.092)
0.085
(0.087)
0.077
(0.079)
0.066
(0.068)
0.051
(0.053)

for Flliptic Disk b=1/8.

Ny I, H, I,
0.029 0,00011 ©0.0000001 0,020
(0.028) (0.,00027) (0.0000001) (0,018)
0.032 0.00011 0,0000002 0,021
(0.031) (0.00027) (0.0000002) (0,019)
0.036 0,00011 0.0000003 0,023
(0,035) (0.00026) (0.0000003) (0.022)
0.041 0.,00012 0,0000008 0,027
(0.039) (0.00025) (0.0000007) (0.026)
0.043 0,00013 0,0000013 0.031
(0.041) (0,00025) (0,0000013) (0.030)
0.045 0.00013 0,0000027 0,037
(0.043) (0.00024) (0.0000025) (0.035)
0.04, 0,00015 0.0000066 0.027
(0.042) (0.00023) (0.0000059) (0.027)
0.039  0.,00020 0,0000252 =0.017
(0.037) (0.,00021) (0.0000208)(=0,016)
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H!
0.043
(0.033)
0.112
(0.083)
0.139
(0.121)
0.014

(0.018)

Hz
0.0004
(0.0003)
0,001
(0.001)
0,002
(0.001)
0.004
(0.003)
0,008
(0.007)
0.018
(0.018)
0.046
(0.043)
0.023
(0,022)



Ll
fine lattice yleld much improved results since Ix and Iz, and Hx and Hz
must be equal in the case of a circular disk. - -

In Figure 1 and Fipure 2 the dependence of ——M "aa and EE:N on
the parameter a are presented. In Figure 3 and Figure Z the quantities
-T-I and -—-H are plotted -as functions of the parameter a. SHimilary,
the quantities 1-'——1 and "—2-“2 are plotted in Figure 5 and Figure 6.
The multiplication factor nEa/A for the ordinates represents the ratio
of the area of a circle having the half length of the ship a as the ra-
dius to the area of the water plane of the ship under consideration, and
was introduced in order to make the curves comparable, Note that these
curves are obtained from the results of the fine lattice,

The curves for the circular disk b=l in Figure 1 and Figure 2 compare
very closely to the corresponding curves in Figure 6 and Figure 7 in (5]
which were obtained by treating the circular disk as an axial symmetric
two=dimensional configuration.

To ascertain the accuracy of the results represented by the curves for
S;l/h and 3;1/8 in Figure 2, the normalized damping factor N} were com=-

puted by the following formula based on the strip method,

' - . ~. - .
(v1.1) TPES NCTNEE SRR RT3
where the value N (& <%%) are taken from Figure 4 in [5] using the
2'g 8

relation, N2( ’l-iz) - —2\1;2|2 « As shown in Table 5, for low fre-
quency the strip method does not yield a satisfactory results. For this

range the present method should rive accurate results,

Table 5
Comparison of Damping Factor of LElliptic Disks for Heave Lvaluated by
Intepral kquation Method and Strip Method.

For b=1/4 For b=1/8
50 nf N ne nf N
y y y y y y
a=n/3 0.127 0,129 0.183 (Not Available)
a=n/2 0.113 0.135 0.166 0.04L3 0,044 0.04L9

a=2n/3 0.131 0.132 0.153 0.042 0,041, 0.04,6

’
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Here in Table 5, N; denotes the value obtained by the use of the original

lattice and N; denotes that by the use of the fine lattice.

An additional check for the results of the heave of a circular
disk can be made by comparing the values of fr(!,!) and fi(i,i) at pivo-
tal points of the equal radial distances. V'e campare these values at the
tip and the half radial distance on the X-axis with those at the tip and
at the half radial distance on the Z-axis in Table 6 using the results of
the fine lattice, At higher frequency the agreement was found to be unsa~
tisfactory presumably due to the use of non-square grid which is primarily
designed for the elliptic disk.

Table 6
Comparison of Real and Imapinary Parts of Density for Heave at Pivotal Poirnts
of Equal Radial Distances on Circular Disk.
fr(i',i’) fi(!,i)
At  Tip on %,Tip on Z,1/2 on %,1/2 on %,Tip on %,Tip on £,1/2 on %,1/2 on %

a=n/6 0727 0.712 0,587 0,59 -0.185 -0.181 =0.160 -0.163
a=n/5 0.694 0,678 0,526  0.536 0,232 0,226 <0.1% -0.200
a=n/l 0,655 0.635 O.442  0.452 =0.301 =0.292 -0.245 -0.251
a=n/3 0,604, 0.579 0,312 0,320 =0.409 -0.393 -0.315 =0.32
a =2t/5 0.572 0.543 0,212 0,218 =0.490 =0.468 <0.361 -0.373
a=n/2 0.535 0.498 0,063 0.064 =0.604 <=0,570 =0.417 =0.433
a =2n/3 0.88  0.435 <-0.185 <=0.198 =0.774 <0.719 -0..82 =0.505
a=n 0.42L, 0.331 =0.678 =0.729 -1.048 =0.954 0.523 -0.558

We remark that as the frequency of the forced oscillation tends to
zero, that is a +0, Mybecomes a constant and Ny being aS? the damping
factor will vanish. In two dimensional case however, My being 0(loga) the
added mass tends to infinity while Ny becomes a constant. In Figure 2, as

a tends to zero the ordinate becomes,

as 32w b .
]im-"—:—N ="—;‘!—(a52) --:.iln‘a
a +o0 y
where A = nSS, and O = zab for the elliptic disk. Hence at the origin

a
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the slopes are,

¢ = 9,869 for be=1,
1/4 12 = 2,4674 for b=1/L,
1/8 =% = 1,2337 for b=1/8, respectively.

These slopes are shown in Figure 2 by the straight lines., It is to be
observed that the computed results deviate very rapidly from the low
frequency approximation.

For the roll and pitch, the results comparable to those presented
in Figure 3 to Fipure 6 cannot be found in the existing literatures.
For the case of circular disk S;l, realizing that roll and pitch are equi-
valent if the disk is turned around by the right angle, we compare the va-
lues of fr(i,i) and fi(I,i) for roll and pitch at pivotal points »f the
equal radial distance. More precisely these values for pitch at the tip
and at the half :adial distanco on X-axis are compared with those for roll
at the tip and at the half radial distance on Z-axis in Table 7 using the
results of the fine lattice. A bad apreement was found at a = & again pro-
bably due to the geometrically unsuitable lattice in use,

Table 7
Comparison of Real and Imaginary Parts of Density for Roll and Pitch at
Pivotal Points of Fqual Radial Distances on Circular Disk,
rr(!,i) ri(i,i)
At  Tip on ¥,Tip on %,1/2 on %,1/2 on %,Tip on %,Tip on.%,1/2 on X,1/2 on %
(Roll) (Pitch) (Roll) (Pitch) (Rol)) (Piteh) (Roll) (Pitch)
an/6 =14 =1.,153 <0.669 0,657 =0,020 0,020 ~0,012 ~0.011
-n/5 =1,208 =1,218 =0,739 <=0.722 0,046 0,044 ~0.029 ~0.027
=x/l, -1.339 =1.350 ~0.886 -0.859 0,138 <0134 <~0.095 <~0.089
= n/3  =1.522 =1.545 =1.193 -1,150 -0.671 0649 -0.560 ~0.514
a2n/5 0,905 =0,977 =0.795 <0.812 -1,259 -1.260 -1,282 =1.206
= n/2 0,126 =C.146 0.089 0.060 =0,642 0,683 =1.006 «0,986
=2n/3 =0.265 =0.268  0.259 0,239 <0.,039 =0.049 -0.568 -0.553
=5n/6 =0.58, =0.558 0,479  O.ul  0.172 0,209 -0.39% -0.378
an =0,7,8 =1,026 0.561 0.60, <0,371 0,215 0.479 0.276

o 9 o o P P

)
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Ve further observe that as the frequency of the forced oscillation

tends to zero, that is a =0, Ix and Iz become constants, while Hx and Hz
being 0(a?) the damping factors will vanish.

The computation work is performed with the IBM 7090 data processing
system at the Westinghouse Electric Corporation in Fast Pittsburgh Works.
The program for the computation is coded into the Fortran language.
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